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Theorem 1 (Inverse Function Theorem) Suppose U ⊂ Rn is open, f : U → Rn is C1, x0 ∈ U
and dfx0 is invertible. Then there exists a neighborhood V of x0 in U and a neighborhood W of
f(x0) in Rn such that f has a C1 inverse g = f−1 : W → V. ( Thus f(g(y)) = y for all y ∈ W and
g(f(x)) = x for all x ∈ V.) Moreover[∂gi

∂yj
(y)
]
1≤i,j≤n

= dgy = (dfg(y))
−1 =

[ ∂fi
∂xj

(g(y))
]−1
1≤i,j≤n

for all y ∈ W

and g is smooth whenever f is smooth.

Remark 1. The theorem says that a continuously differentiable function f between regions in Rn

is locally invertible near points where its differential is invertible,
i.e. W = {y = (y1(x), . . . , yn(x)) = (f1(x), . . . , fn(x)) = f(x) | x ∈ V },
V = {x = (x1(y), . . . , xn(y)) = (g1(y), . . . , gn(y)) = g(y) | y ∈ W},
and each coordinate function is continuously differentiable.

Remark 2. Let 0 < a < 1, define f : R → R by f(x) =

ax+ x2 sin
1

x
if x 6= 0

0 if x = 0
. Compute f ′(x)

for all x ∈ R. Show that f ′(0) > 0, yet f is not one-to-one in any neighborhood of 0 [by using
(1) the fact that there exists a sequence of points {xn → 0} at which f ′(xn) = 0, and f ′′(xn) 6= 0,
(2) the observation that if f ′(p) = 0, f ′′(p) 6= 0, then f cannot be one-to-one near p.].
This example shows that in the Inverse Function Theorem, the hypothesis that f is C1 cannot be
weaken to the hypothesis that f is differentiable.
Remark 3. Define f : R2 → R2 by f(x, y) = (ex cos y, ex sin y). Show that f is C1 and df(x,y) is
invertible for all (x, y) ∈ R2 and yet f is not one-to-one function globally. Why doesn’t this contradict
the Inverse Function Theorem?
Example 1. Use Inverse Function Theorem to determine whether the system

u(x, y, z) = x+ xyz
v(x, y, z) = y + xy
w(x, y, z) = z + 2x+ 3z2

can be solved for x, y, z in terms of u, v, w near p = (0, 0, 0).
Solution: Set F (x, y, z) = (u, v, w). Then

DF (p) =

ux uy uz
vx vy vz
wx wy wz

 (p) =

1 + yz xz xy
y 1 + x 0
2 0 1 + 6z

 (p) =

1 0 0
0 1 0
2 0 1

 and

∣∣∣∣∣∣
1 0 0
0 1 0
2 0 1

∣∣∣∣∣∣ = 1 6= 0.

By the Inverse Function Theorem, the inverse F−1(u, v, w) exists near p = (0, 0, 0), i.e. we can solve
x, y, z in terms of u, v, w near p = (0, 0, 0).

Theorem 2 (Implicit Function Theorem)Let U ⊂ Rm+n ≡ Rm × Rn be an open set, f =
(f1, . . . , fn) : U → Rn a C1 function, (a, b) ∈ U a point such that f(a, b) = 0 and the n × n matrix

dyf |(a,b) =
[∂fi
∂yj

(a, b)
]
1≤i,j≤n

is invertible. Then there exists a neighborhood V of (a, b) in U a

neighborhood W of a in Rm and a C1 function g : W → Rn such that

{(x, y) ∈ V ⊂ Rm × Rn | f(x, y) = 0} = {(x, g(x)) | x ∈ W} = the graph of g over W

i.e. Letting S = {(x, y) ∈ Rm × Rn | f(x, y) = 0} denote the solution set, then S ∩ V is of the
dimension m, and it is equal to graph(g), the graph of a C1 function g, over W . Moreover

dgx = −(dyf)−1|(x,g(x))dxf |(x,g(x))
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and g is smooth whenever f is smooth.
Example 2. Let F : R4 → R2 be given by F (x, y, z, w) = (G(x, y, z, w), H(x, y, z, w))
= (y2 + w2 − 2xz, y3 + w3 + x3 − z3), and let p = (1,−1, 1, 1).
(a) Show that we can solve F (x, y, z, w) = (0, 0) for (x, z) in terms of (y, w) near (−1, 1).

Solution: Since DF (p) =

[
Gx Gy Gz Gw

Hx Hy Hz Hw

]
(p) =

[
−2 −2 −2 2
3 3 −3 3

]
and

∣∣∣∣Gx Gz

Hx Hz

∣∣∣∣ (p) =

∣∣∣∣−2 −2
3 −3

∣∣∣∣ = 12 6= 0, we can write (x, z) in terms of (y, w) near (−1, 1) by

Implicit Function Theorem.

(b) If (x, z) = Φ(y, w) is the solution in part (a), show that DΦ(−1, 1) is given by the matrix

−
[
−2 −2
3 −3

]−1 [−2 2
3 3

]
=

[
−1 0
0 1

]
Solution: The Implicit Function Theorem implies that, near p,the solution set
{(x, y, z, w) | F (x, y, z, w) = (0, 0)} is the graph of (x, z) = Φ(y, w) near (−1, 1).

Hence, we have
∂F

∂y
= (0, 0), and

∂F

∂w
= (0, 0) near (−1, 1).

Therefore, 0 = Gx
∂x

∂y
+Gy +Gz

∂z

∂y
, and 0 = Gx

∂x

∂w
+Gz

∂z

∂w
+Gw,

which implies that −[Gy, Gw] = [Gx, Gz]


∂x

∂y

∂x

∂w
∂z

∂y

∂z

∂w

 .
Similarly, we have −[Hy, Hw] = [Hx, Hz]


∂x

∂y

∂x

∂w
∂z

∂y

∂z

∂w

 .
Thus, we have −

[
Gy Gw

Hy Hw

]
=

[
Gx Gz

Hx Hz

]
∂x

∂y

∂x

∂w
∂z

∂y

∂z

∂w


or DΦ =


∂x

∂y

∂x

∂w
∂z

∂y

∂z

∂w

 = −
[
Gx Gz

Hx Hz

]−1 [
Gy Gw

Hy Hw

]
Hence, DΦ(−1, 1) is given by the matrix

−
[
−2 −2
3 −3

]−1 [−2 2
3 3

]
=

[
−1 0
0 1

]
Remark 4. The theorem says that if f : U ⊂ Rm+n → Rn is a map of the class C1(U) , (a, b) is a

point in U, and dyf |(a,b) =
[∂fi
∂yj

(a, b)
]
1≤i,j≤n

is invertible, then, locally, the solution set

S = {(x, y) ∈ U | f(x, y) = f(a, b)} is a C1 “manifold” of dimension m.

Remark 5. Let f : U ⊂ Rm+n → Rn is a map of the class C1 on an open subset U of R(m+n),

and assume that the differential, dfp =
[ ∂fi
∂xj

]
1≤i≤n;1≤j≤(m+n)

, is of the constant rank k at
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each p ∈ U. By relabeling, if necessary, we may assume that f̂ = (f1, . . . , fk) : U ⊂ Rm+n → Rk is a

map with its differential df̂p =
[ ∂fi
∂xj

]
1≤i≤k;1≤j≤(m+n)

,of rank k. The Implicit Function Theorem says

that locally the solution set S = {x ∈ U | f̂(x) = 0} is a C1 “manifold” of dimension (m + n) − k.
Identify S with an open neighborhood W ⊂ R(m+n)−k of 0 ∈ R(m+n)−k and identify U with V ×W,
such that we write each x ∈ V × W ⊂ R(m+n) as x = (x̄, x̂), where x̄ = (x̄1, . . . , x̄k) ∈ V, and

x̂ = (x̂k+1, . . . , x̂m+n) ∈ W. This implies f̂(0, x̂) = 0, and
[ ∂f̂i
∂x̄j

]
1≤i,j≤k

is invertible on V ×W. Using

the Inverse Function Theorem, we may show that the range f̂(V ×W ) = f(U) locally is
a k−dimensional “manifold”.

Remark 6. Two mappings are said to be locally equivalent if under suitable choices of local coor-
dinate systems in the domain and range spaces (with origin at 0) they can be written by the same
formulas. The Implicit Function Theorem says that if f, g : U ⊂ Rm+n → Rn is a map of the class
C1(U) , p is a point in U, and rk[df(p)] = rk[dg(p)] = n, then f and g are equivalent, i.e. there exists
diffeomorphisms h : Rm+n → Rm+n, k : Rn → Rn, such that f ◦ h = k ◦ g.

Definition 1. A map f : U ⊂ Rm → Rn is called a Lipschitz map on U if there exists a constant
C ≥ 0 such that

‖f(x)− f(y)‖ ≤ C‖x− y‖ for all x, y ∈ U.

If one can choose a (Lipschitz) constant C < 1 such that the above Lipschitz condition hold on U,
then f is called a contraction map.

Example 3. Let U be a convex subset of Rm, and f : U ⊂ Rm → Rn be a map with bounded

‖df‖ = sup{‖dfp(x)‖Rn

‖x‖Rm

| p ∈ U, x 6= 0} (which implies that dfp is an n ×m matrix, so if ‖df‖ ≤ M

then ‖∇fi‖ ≤M for i = 1, . . . ,m.). Then f is Lipscitz on U.

Definition 2. Let U be a subset of Rm, and f be a map that maps U into U, i.e. f : U → U. A
point p ∈ U is said to be a fixed point of f if f(p) = p.

Theorem 3. (Fixed point theorem for contractions) Let f : Rm → Rm be a contraction map.
Then f has a fixed point.
Note that Rm is complete which implies that any Cauchy sequence (is bounded and has a limiting
point by Bolzano-Weierstrass theorem, and Cauchy condition implies that it) converges.

Definition 3. (Uniform Boundedness) Let K be a compact subset of Rp, and Cpq(K) =
BCpq(K) = {f : K ⊂ Rp → Rq} denotes the set of all continuous (and bounded) functions from K
into Rq. We say that a set F ⊂ Cpq(K) is bounded (or uniformly bounded) on K if there exists a
constant M such that ‖f‖K = sup{f(x) | x ∈ K} ≤M, for all f ∈ F .

Definition 4. (Uniform Equicontinuity) A set F of functions on K to Rq is said to be uniformly
equicontinuous on K if, for each real number ε > 0 there is a number δ(ε) > 0 such that if x, y belong
to K and ‖x− y‖ < δ(ε) and f is a function in F , then ‖f(x)− f(y)‖ < ε

Definition 5. (Uniform Convergence) A sequence (fn) of functions on U ⊂ Rp to Rq converges
uniformly on a subset D ⊂ U to a function f if for each ε > 0 there is a natural number L(ε) such
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that for all n ≥ L(ε) and x ∈ D, then

‖fn(x)− f(x)‖ < ε.

In this case, we say that the sequence is uniformly convergent on D. It is immediate from the defi-
nition that a sequence fn ∈ Bpq(D) = {the set of bounded functions from D ⊂ Rp to Rq} converges
uniformly to f ∈ Bpq(D) on D if and only if lim

n→∞
‖fn−f‖D = lim

n→∞
sup{‖fn(x)−f(x)‖ | x ∈ D} = 0.

Examples 4. (a) For each n ∈ N, let fn : R→ R be defined by fn(x) =
x

n
for each x ∈ R.

(b) For each n ∈ N, let fn : I = [0, 1] ⊂ R→ R be defined by fn(x) = xn for each x ∈ I.

(c) For each n ∈ N, let fn : R→ R be defined by fn(x) =
x2 + nx

n
for each x ∈ R.

(d) For each n ∈ N, let fn : R→ R be defined by fn(x) =
1

n
sin(nx+ n) for each x ∈ R.

One can easily see that the limiting functions are f ≡ 0, f(x) =

{
0, 0 ≤ x < 1

1, x = 1
, f(x) = x, and

f ≡ 0, for (a), (b), (c), and (d), respectively, and only the convergence in (d) is uniform.

Theorem 4. (Arzela-Ascoli Theorem). Let K be a compact subset of Rp and let F be a
collection of functions which are continuous on K and have values in Rq. The following properties
are equivalent:
(a) The family F is bounded and uniformly equicontinuous on K.
(b) Every sequence from F has a subsequence which is uniformly convergent on K.

Example 5. Consider the following sequences of functions which show that Arzela-Ascoli Theo-
rem may fail if the various hypothesis are dropped.
(a) fn(x) = x+ n for x ∈ [0, 1]
(b) fn(x) = xn for x ∈ [0, 1]

(c) fn(x) =
1

1 + (x− n)2
for x ∈ [0,∞)

Example 6. Let fn : [0, 1] → R be continuous and be such that |fn(x)| ≤ 100 for every n and for
all x ∈ [0, 1] and the derivatives f ′n(x) exist and are uniformly bounded on (0, 1).
(a) Show that there is a constant M such that | fn(x)− fn(y) | ≤M |x− y | for any x, y ∈ [0, 1] and
any n ∈ N.
Solution: Let M be a constant such that |f ′n(x)| ≤M for all x ∈ (0, 1). By the mean value theorem,
we get | fn(x)− fn(y) | ≤M |x− y | for any x, y ∈ [0, 1] and any n ∈ N.

(b) Prove that fn has a uniformly convergent subsequence.
Solution: We apply the Arzela-Ascoli Theorem by verifying that {fn} is equicontinuous and
bounded. Given ε, we can choose δ = ε/M, independent of x, y, and n. Thus {fn} is equicon-
tinuous. It is bounded because ‖fn‖ = sup

x∈[0,1]
|fn(x)| ≤ 100.

Example7. Let the functions fn : [a, b]→ R be uniformly bounded continuous functions. Set

Fn(x) =

∫ x

a

fn(t) dt, for x ∈ [a, b]. Prove that Fn has a uniformly convergent subsequence.

Solution: Since ‖Fn‖ ≤ ‖fn‖(b − a), Fn is uniformly bounded. Also, since |F ′n(x)| ≤ ‖fn‖, Fn is
equicontinuous by the preceding result. Therefore, Fn has a uniformly convergent subsequence by
Arzela-Ascoli Theorem.
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