Advanced Calculus Handout 1 March 14, 2011

Theorem 1 (Inverse Function Theorem) Suppose U C R" is open, f : U — R" is Ct, xy € U
and df,, is invertible. Then there exists a neighborhood V' of xy in U and a neighborhood W of
f(xo) in R™ such that f has a C! inverse g = f~': W — V. ( Thus f(g(y)) =y for all y € W and
g(f(x)) =z for all z € V.) Moreover
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and ¢ is smooth whenever f is smooth.

Remark 1. The theorem says that a continuously differentiable function f between regions in R"
is locally invertible near points where its differential is invertible,
ie. W={y= (), .. yn(2)) = (fi(2),..., ful2)) = f(2) | 2 € V],

V=Ae=(@1),. . 2(¥) = (@), 9:(y)) = 9() [ y € W},
and each coordinate function is continuously differentiable.
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for all x € R. Show that f/(0) > 0, yet f is not one-to-one in any neighborhood of 0 [by using

(1) the fact that there exists a sequence of points {z,, — 0} at which f'(x,) =0, and f"(z,) # 0,
(2) the observation that if f'(p) =0, f”(p) # 0, then f cannot be one-to-one near p.].

This example shows that in the Inverse Function Theorem, the hypothesis that f is C' cannot be
weaken to the hypothesis that f is differentiable.

Remark 3. Define f : R* — R? by f(z,y) = (e“cosy,e”siny). Show that f is C* and df,, is
invertible for all (z,y) € R? and yet f is not one-to-one function globally. Why doesn’t this contradict
the Inverse Function Theorem?

Example 1. Use Inverse Function Theorem to determine whether the system

Remark 2. Let 0 < a < 1, define f : R — R by f(z) = . Compute f'(z)

u(z,y,z) = x+xyz

v(,y,2) = y+tay
w(z,y,2) = 2+ 2z + 322

can be solved for z,y, z in terms of u, v, w near p = (0,0,0).
Solution: Set F(x,y,z) = (u,v,w). Then

Up Uy Uy 1+yz 2 xy 100 100
DF(p)= (v, v, wv,|(p)= y 1+ 0 (p)=10 1 0f and |0 1 0| =1#0.
Wy Wy W, 2 0 1462 2 01 2 01
By the Inverse Function Theorem, the inverse F~*(u, v, w) exists near p = (0,0,0), i.e. we can solve

x,y, z in terms of u, v, w near p = (0,0,0).
Theorem 2 (Implicit Function Theorem)Let U C R™™™ = R™ x R™ be an open set, [ =
(fi,-- fn) : U = R™ a C! function, (a,b) € U a point such that f(a,b) = 0 and the n x n matrix

ofi
dyflap = [8f (a,b)} is invertible. Then there exists a neighborhood V' of (a,b) in U a
Yj
neighborhood W of @ in R™ and a C! function g : W — R™ such that

1<i,j<n

{(z,y) e VCR" xR"| f(z,y) =0} = {(x,g(z)) | © € W} = the graph of g over W

i.e. Letting S = {(x,y) € R™ x R" | f(z,y) = 0} denote the solution set, then S NV is of the
dimension m, and it is equal to graph(g), the graph of a C* function g, over W. Moreover

dg. = —(dyf) ™ (g daf | @g(e)
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and g is smooth whenever f is smooth.

Example 2. Let F : R* — R? be given by F(z,y, z,w) = (G(z,y, z,w), H(z,y, z,w))

= (P +w? — 2wz, +wd +2° — 2%, and let p = (1,—1,1,1).

(a) Show that we can solve F(z,y,z,w) = (0,0) for (z,2) in terms of (y,w) near (—1,1).

|G, Gy G, Gy, -2 -2 -2 2

Solution: Since DF(p) = {Hm H, H. HJ (p) = {3 5 _3 3}

G, G, -2 -2

H, H, <p)_‘3 -3

Implicit Function Theorem.

and ' = 12 # 0, we can write (z, z) in terms of (y,w) near (—1,1) by

(b) If (z,2) = ®(y,w) is the solution in part (a), show that D®(—1,1) is given by the matrix
2 2] [-2 2] _[-10
3 -3 3 3 |0 1

Solution: The Implicit Function Theorem implies that, near p,the solution set
{2y, 2, w) | F(z,y, 2,w) = (0,0)} is the graph of (z, 2) = @(y, w) near (1, 1)

oF OF
Hence, we have — = (0,0), and — = (0,0) near (—1,1).
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Ox 0z Ox 0z
Therefore, 0 = Gzﬁ_y +Gy+ Gza—y, and 0 = Gxa—w + Gza—w + G,
_8_$ 8_':6-
which implies that —[Gy, G] = [Go, G2] |9V OV
L0y Ow.
_a_x a_x_
Similarly, we have —[H,, H,,| = [H,, H,] gz %15
Ldy O]
Jx Ox
Gy GU/_ _ G:E Gz 8_y a_w
Thus, we have — {Hy i, = |:H3: Hj % %
oy Ow
Ox Oz ] X
oy ow| _ [G. G.]T[G, G,
or DO = % % = |m, HJ {Hy o
dy Ow

Hence, D®(—1,1) is given by the matrix

2 2172 2] _[-1 0
3 -3 3 3] |0 1
Remark 4. The theorem says that if f: U C R™™ — R" is a map of the class C'(U) , (a,b) is a

ofi .
—f(a, b)} is invertible, then, locally, the solution set
0y; 1<i,j<n

S={(z,y) €U | f(z,y) = f(a,b)} is a C' “manifold” of dimension m.

point in U, and d, f|(ap = [

Remark 5. Let f: U C R™*" — R" is a map of the class C' on an open subset U of R,
[&ﬂ'

} , is of the constant rank £ at
0zl 1<i<n;1<j<(m+n)

and assume that the differential, df, =

Page 2



Advanced Calculus Handout 1 (Continued) March 14, 2011

each p € U. By relabeling, if necessary, we may assume that f =(fi,..., fr): UCR™" 5 RFisa
Afi

&L’j] 1<i<k;1<j<(m+n)

Syl >J >

map with its differential d fp = [ ,of rank k. The Implicit Function Theorem says

that locally the solution set S = {z € U | f(z) = 0} is a C* “manifold” of dimension (m + n) — k.
Identify S with an open neighborhood W C R™+™=F of 0 € R™+™) =k and identify U with V x W,
such that we write each z € V x W C R"™™ as x = (z,2), where # = (Z,,...,7;) € V, and
Of;
mjl 1<i,j<k
the Inverse Function Theorem, we may show that the range f(V x W) = f(U) locally is
a k—dimensional “manifold”.

T = (Tks1y .- Tman) € W. This implies f(O, z) =0, and [ is invertible on V' x W. Using

Remark 6. Two mappings are said to be locally equivalent if under suitable choices of local coor-
dinate systems in the domain and range spaces (with origin at 0) they can be written by the same
formulas. The Implicit Function Theorem says that if f, g : U C R™" — R" is a map of the class
CY(U) , pis a point in U, and rk[df (p)] = rk[dg(p)] = n, then f and g are equivalent, i.e. there exists
diffeomorphisms A : R™*t" — R™*" Lk : R"® — R", such that foh=Fkog.

Definition 1. A map f: U C R™ — R" is called a Lipschitz map on U if there exists a constant
C' > 0 such that
1f (@) = f)l < Cllz —yl| forall z,y € U.

If one can choose a (Lipschitz) constant C' < 1 such that the above Lipschitz condition hold on U,
then f is called a contraction map.

Example 3. Let U be a convex subset of R™, and f : U C R™ — R” be a map with bounded

17} n
\df|| = sup{”f%(ﬂ | p € U,z # 0} (which implies that df, is an n x m matrix, so if ||df|| < M
i Rm

then |V fi|| < M fori=1,...,m.). Then f is Lipscitz on U.

Definition 2. Let U be a subset of R™, and f be a map that maps U into U, i.e. f:U — U. A
point p € U is said to be a fixed point of f if f(p) = p.

Theorem 3. (Fixed point theorem for contractions) Let f : R™ — R™ be a contraction map.
Then f has a fixed point.

Note that R™ is complete which implies that any Cauchy sequence (is bounded and has a limiting
point by Bolzano-Weierstrass theorem, and Cauchy condition implies that it) converges.

Definition 3. (Uniform Boundedness) Let K be a compact subset of RP, and C,,(K) =
BC,y(K) ={f: K C R* — R?} denotes the set of all continuous (and bounded) functions from K
into RY. We say that a set .# C C,,(K) is bounded (or uniformly bounded) on K if there exists a
constant M such that ||f||x =sup{f(z) |z € K} < M, for all f € .Z.

Definition 4. (Uniform Equicontinuity) A set .% of functions on K to R is said to be uniformly
equicontinuous on K if; for each real number € > 0 there is a number 0(¢) > 0 such that if z, y belong

to K and ||z —y|| < d(€) and f is a function in .Z, then || f(z) — f(y)|| < €

Definition 5. (Uniform Convergence) A sequence (f,,) of functions on U C R? to RY converges
uniformly on a subset D C U to a function f if for each € > 0 there is a natural number L(¢) such

Page 3
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that for all n > L(e) and = € D, then

[ fu(z) — f(2)]| <

In this case, we say that the sequence is uniformly convergent on D. It is immediate from the defi-

nition that a sequence f,, € B,,(D) = {the set of bounded functions from D C R to R?} converges

uniformly to f € Bp,(D) on D if and only if lim || f, — fllp = lim sup{|| fn.(z) — f(z)|| | x € D} = 0.
n—o0 n—oo

Examples 4. (a) For each n € N, let f,, : R — R be defined by f,(z) = ? for each z € R.

n
(b) For each n € N, let f,,: I =[0,1] C R — R be defined by f,(z) = 2" for each z € I.
? + nx

(c) For each n € N, let f,, : R — R be defined by f,(z) = for each x € R.
n

1
(d) For each n € N, let f,, : R — R be defined by f,(z) = —sin(nx + n) for each = € R.
n

0, 0<zr <1
1, r=1
f =0, for (a), (b), (c), and (d), respectively, and only the convergence in (d) is uniform.

One can easily see that the limiting functions are f =0, f(z) = , f(z) = x, and

Theorem 4. (Arzela-Ascoli Theorem). Let K be a compact subset of R? and let .# be a
collection of functions which are continuous on K and have values in RY. The following properties
are equivalent:

(a) The family .# is bounded and uniformly equicontinuous on K.

(b) Every sequence from .# has a subsequence which is uniformly convergent on K.

Example 5. Consider the following sequences of functions which show that Arzela-Ascoli Theo-
rem may fail if the various hypothesis are dropped.

(@) fo(x)=2+n for z€l0,1]

(b) fu(x) =2™ for x € [0,1]

(c) ful2)

Example 6. Let f, : [0,1] — R be continuous and be such that |f,(x)| < 100 for every n and for
all z € [0, 1] and the derivatives f!(z) exist and are uniformly bounded on (0, 1).

(a) Show that there is a constant M such that | f,(z) — fu(y) | < M |z —y| for any z,y € [0, 1] and
any n € N.

Solution: Let M be a constant such that |f (z)] < M for all z € (0,1). By the mean value theorem,
we get | fu(z) — fu(y) | < M |z —y| for any z,y € [0,1] and any n € N.

:m fOI' T € [0,00)

(b) Prove that f, has a uniformly convergent subsequence.
Solution: We apply the Arzela-Ascoli Theorem by verifying that {f,} is equicontinuous and
bounded. Given €, we can choose § = ¢/M, independent of z, y, and n. Thus {f,} is equicon-

tinuous. It is bounded because || f,|| = sup |f.(x)] < 100.
z€[0,1]

Example7. Let the functions f, : [a,b] — R be uniformly bounded continuous functions. Set

F.(x) = / fn(t)dt, for x € [a,b]. Prove that F), has a uniformly convergent subsequence.

Solution: Since ||F,|| < ||full/(b — @), F, is uniformly bounded. Also, since |F)(z)| < ||full, Fn is
equicontinuous by the preceding result. Therefore, F,, has a uniformly convergent subsequence by
Arzela-Ascoli Theorem.
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